

 The Taxi Registry

Operator's Guide

Vesion Description Author Date

1.0 Initial David Beaudoin 16/08/2017

1.1 Révision Stéphane Leblanc 07/09/2017

1.2 Révision David Beaudoin 25/01/2018

1.3 Révision Sébastien Blais 22/11/2018

1.4 Taxi position and status Mandatory column Gaston-Andres Bellei 06/12/2019

1.5 Sections 2.4 and 3.3 updated Gaston-Andres Bellei 15/06/2020

1.6 Sections 2.4 and 4.1 updated Gaston-Andres Bellei 21/07/2020

1.7 Sections 2,1, 2.2, 2.3, 2.4 and 4.1 updated Gaston-Andres Bellei 29/07/2020

1.8 Updated example column in section 4.1 Brian Di Croce 19/08/2020

1.9 Various text corrections Gaston-Andres Bellei 10/11/2020

1.10 Bill 17 compliance added and general formatting Gaston-Andres Bellei 20/11/2020

1.11 Change related to obsolete attributes in json Daniel Brodeur 08/01/2021

1.12 Minor changes Stéphane Leblanc 02/02/2021

1.20 Change related to fake endpoints + miscellaneous Matthieu Perrin 15/04/2021

1.21 Favor deep link over hailing Matthieu Perrin 27/06/2022

1.22 Favor inquiry endpoint over GTFS Feed Matthieu Perrin 17/05/2023

1.23 Add Bonjour field and Deeplink addresses Matthieu Perrin 26/09/2025

Table of contents

1. Introduction ... 1

1.1 Overview ... 1

1.2 Process of integration ... 1

1.3 Mandatory HTTP Headers .. 2

1.4 Authentication ... 2

1.5 APIs implementation ... 2

2. Contextual Data .. 2

2.1 Registering a Driver .. 2

2.2 Registering a Vehicle .. 4

2.3 Registering a Owner/license (ADS) .. 9

2.4 Declaring a Taxi ...13

3. Taxi Positions and Status...17

3.1 Updating the location and status of a taxi ..17

3.2 Taxis Status ...20

3.3 Updating the status of a taxi ..20

3.4 Querying a taxi ..21

4. GTFS-OnDemand ..23

4.1 GTFS-OnDemand Deep Link Compliance ...24

4.1.1 URL Scheme ..24

4.1.2 Services available ..26

4.1.3 Coordinates and addresses ...26

4.2 GTFS-OnDemand Acceptance Process ..26

4.2.1 Prerequisites ..26

4.2.2 Communicate your information to the Taxi Registry support team ...27

4.2.3 Make the applications and/or website conform to GTFS-OnDemand...27

4.2.4 Final verification ...29

5. Tests ..29

5.1 Contextual Data Tests ...30

5.1.1 The license plate of a vehicle changes ...30

5.2 Bill 17 Tests ...33

5.2.1 Migrate a driver when the vehicles he drives have not been migrated yet ...34

5.2.2 Migrate a vehicle when the drivers who drive it have been migrated ...38

5.2.3 Migrate a vehicle and the drivers who drive it at the same time ...43

5.2.4 Unallowed migration paths ...48

5.2.5 Many vehicles can have the same owner ...48

1

1. Introduction

1.1 Overview

The Montreal Taxi Registry wants to open up new markets for the taxi industry by promoting taxi

services to trip planning apps. Customers can use trip planning apps to book taxis geolocated by

taxi operators. The Taxi Registry mediates between trip planning apps and operators.

All interactions with the Taxi Registry can be made from the central infrastructure of taxi operators,

this also includes communication of the location and availability of taxis (using on-board equipment

in the taxi).

1.2 Process of integration

To integrate with the Taxi Registry, the operator must send its contextual data (section 2) and the

position and status of its taxis (section 3). Once the development is done in the acceptance

environment, the operator must contact the Taxi Registry support team. When the Taxi Registry

support team has verified that the operator is properly integrated, an API key will be sent to the

operator for the production environment.

Sending the positions and status of the taxis is the first milestone for the operator. The law states

that the taxi owners must send the position and the status of their taxis to the Taxi Registry via an

authorized taxi operator. Operators will be given an API key for the production environment even if

they do not offer a taxi booking solution (section 4).

Operators with a taxi booking solution (phone, website and/or applications) can be promoted to the

general public by the Taxi Registry. Indeed, the Taxi Registry can promote the operator to the

customers that use trip planning apps integrated with the Taxi Registry. Although an operator that

offers only by phone booking can be promoted by the Taxi Registry, we strongly encourage the

operators to support deep linking with their mobile applications to offer the best user experience.

Section 4 describes how an operator can be promoted to the general public by the Taxi Registry.

The Taxi Registry support team can be contacted at: support.taxi.exchange.point@montreal.ca

Here are the links to communicate with the Taxi Registry services:

Acceptance : https://taximtl.accept.ville.montreal.qc.ca

Production : https://taximtl.ville.montreal.qc.ca

http://www.registretaximontreal.ca/en/
mailto:support.taxi.exchange.point@montreal.ca
https://taximtl.accept.ville.montreal.qc.ca/
https://taximtl.ville.montreal.qc.ca/
https://taximtl.ville.montreal.qc.ca/

2

1.3 Mandatory HTTP Headers

The following HTTP Headers are mandatory for all requests to the Taxi Registry REST APIs:

Name Value Description

Accept Application/json Media types which are acceptable for the response

X-API-KEY token API Key

1.4 Authentication

Authentication of your application is done for each query to the Taxi Registry by including a HTTP

header X-API-KEY.

API keys are available for accredited developers and will be distributed by the BTM (Bureau Taxi

Montréal) upon demand and validation.

1.5 APIs implementation

This documentation provides an overview of the Taxi Registry REST APIs. REST APIs provide

access to resources (data entities) via URL paths. To use a REST API, your application will make

an HTTPS request and parse the response. Your methods will be the standard HTTP methods like

GET, PUT and POST. REST APIs operate over HTTPS making it easy to use with any

programming language or framework. The input and output formats for the Taxi Registry REST APIs

are JSON.

Note that data is isolated for each operator. No operator can see the other operator’s data.

2. Contextual Data

2.1 Registering a Driver

The structure of the required driver object is described below. You should push this information on

a daily basis to keep the data up to date.

Calls to this API are idempotent: you can update a driver simply by submitting the updated driver

object with the same post method. If the department or professional license is different, a new driver

will be created; if the department and professional license are unchanged, the driver will be

updated.

3

Status on create Status on update Unique identifier(s)

201 200 departement and

professional_licence

POST /api/drivers

Parameters

Body (JSON) ** Send only one item at a time
{

 "data": [

 {

 "birth_date": "1950-12-22",

 "departement": {

 "nom": "Québec",

 "numero": "1000"

 },

 "first_name": "Jon",

 "last_name": "Doe",

 "professional_licence": "L1531-171274-08"

 }

]

}

Response (JSON) status 200 / 201
{

 "data": [

 {

 "birth_date": "1950-12-22",

 "departement": {

 "nom": "Québec",

 "numero": "1000"

 },

 "first_name": "Jon",

 "last_name": "Doe",

 "professional_licence": "L1531-171274-08"

 }

]

}

4

Key Value Type Description

departement department object The departement object is constituted of the identifier
numero and the name (nom) of the local authority.

When a new driver is created by an Operator, an empty
string or null can be passed instead of the name nom: only
the identifier numero is used by the Taxi Registry.

For Quebec, Since the adoption of Bill 17, the department
should always be:
departement.nom: "Québec" and
departement.numero: 1000. When departement.numero is
1000 (Québec), the driver is identified by it’s SAAQ driver's
license number.

Before Bill 17, drivers were part of the departement
660(Montreal) and were identified by their ‘pocket number’.

professional_licence string Professional license number of the driver.
It is often a string of digits but it might for some departments
contain letters or other characters like dash or slashes.

Warning: this identifier is not unique at the national level:
two local authorities can each assign the same number to
different drivers.
Warning: the typo "licence" (French writing) instead of
"license" (English writing) is still in the API (as of version 2).

The couple of this professional license number
(professional_licence) and the licensing local authority
(departement) is used as the driver identifier when declaring
a taxi as a vehicle/driver/license triplet.

For Quebec, Since the adoption of Bill 17, the SAAQ
driver's license number is used as the professional_licence.

Before Bill 17, drivers were part of the departement
660(Montreal) and were identified by their ‘pocket number’.

For historical reasons, values of professional_licence are
case sensitive. Even though, in reality, professional_licence
should not have lower case letters.

last_name string Last name of the driver.

first_name string First name of the driver.

birth_date string, RFC3339 Birth date of the driver in "YYYY-MM-DD" format.
For Quebec, the birth date is ignored for privacy reasons.

2.2 Registering a Vehicle

The structure of the required vehicle object is described below. You should push this information on

a daily basis to keep the data up to date.

https://tools.ietf.org/html/rfc3339

5

Calls to this API are idempotent: you can update a vehicle simply by submitting the updated vehicle

object with the same post method. If the license plate is different, a new vehicle will be created; if

the license plate is unchanged, the vehicle will be updated.

Response on create Response on update Unique identifier(s)

201 200 licence_plate

POST /api/vehicles
Parameters
Body (JSON) ** Send only one item at a time
{

 "data": [

 {

 "licence_plate": "FAB1234",

 "vehicle_identification_number": "1FTFW1R6XBFD08251",

 "air_con": true,

 "bonjour": true,

 "horodateur": "aa",

 "color": "gris",

 "date_dernier_ct": "2016-12-22",

 "date_validite_ct": "2016-12-22",

 "credit_card_accepted": true,

 "electronic_toll": true,

 "fresh_drink": true,

 "pet_accepted": true,

 "tablet": true,

 "dvd_player": true,

 "taximetre": "aa",

 "every_destination": true,

 "nfc_cc_accepted": true,

 "baby_seat": true,

 "special_need_vehicle": true,

 "amex_accepted": true,

 "gps": true,

 "engine": "GO",

 "cpam_conventionne": true,

 "relais": true,

 "bank_check_accepted": true,

 "luxury": true,

 "horse_power": 2.0,

 "model_year": 1995,

 "wifi": true,

 "type_": "sedan",

 "nb_seats": 0,

 "constructor": "audi",

 "bike_accepted": true,

 "model": "a4"

 }

]

}

6

Response (JSON) status 200 / 201
{

 "data": [

 {

 "licence_plate": "FAB1234",

 "vehicle_identification_number": "1FTFW1R6XBFD08251",

 "air_con": true,

 "bonjour": true,

 "amex_accepted": true,

 "baby_seat": true,

 "bank_check_accepted": true,

 "bike_accepted": true,

 "color": "gris",

 "constructor": "audi",

 "cpam_conventionne": true,

 "credit_card_accepted": true,

 "date_dernier_ct": "2016-12-22",

 "date_validite_ct": "2016-12-22",

 "dvd_player": true,

 "electronic_toll": true,

 "engine": "GO",

 "every_destination": true,

 "fresh_drink": true,

 "gps": true,

 "horodateur": "aa",

 "horse_power": 2,

 "id": 36,

 "luxury": true,

 "model": "a4",

 "model_year": 1995,

 "nb_seats": 0,

 "nfc_cc_accepted": true,

 "pet_accepted": true,

 "private": false,

 "relais": true,

 "special_need_vehicle": true,

 "tablet": true,

 "taximetre": "aa",

 "type_": "sedan",

 "wifi": true

 }

]

}

7

Key Value Type Description

licence_plate String Mandatory - License plate of the vehicle.
Warning: the typo "licence" (French writing) instead of "license"
(English writing) is still in the API (as of version 2).
Before Bill 17, vehicles used to have a license plate starting with the
letter T. With the recent changes the bill introduces, all vehicles will be
issued a new plate either for commercial purpose (first letter F) or
promenade. Plates starting with the letter T will be prohibited.The
licence_plate is used as the vehicle identifier to declare a taxi as a
vehicle/driver/license triplet.
For historical reasons, values of licence_plate are case sensitive.
Even though, in reality, license plates should not have lower case
letters.

vehicle_identification_number String Optional - The licence_plate is the only mandatory identifier for
vehicles in the Taxi Registry.

Even though it is an optional attribute, the vehicle identification
number must be transmitted when available.

constructor String Mandatory - Constructor of the vehicle.

model String Mandatory - Model of the vehicle.

color String Color of the vehicle.

type_ String Type of the vehicle.
The possible values are sedan, station_wagon, normal or mpv.
Warning: the name of this key is type_ with the final underscore.
If your type is not listed use "type_": null.

nb_seats Integer Number of seating positions available for passengers in the vehicle
(not counting the seat of the driver).
As per European Regulation EU/678/2011 the following
requirements apply for the counting of the seating positions:
(a) each individual seat shall be counted as one seating position;
(b) in the case of a bench seat, any space having a width of at least
400 mm measured at the seat cushion level shall be counted as one
seating position.
(c) however, a space as referred to in point (b) shall not be counted as
one seating position where:
(i) the bench seat includes features that prevent the bottom of the
manikin from sitting in a natural way - for example: the presence of a
fixed console box, an unpadded area or an interior trim interrupting
the nominal seating surface;
(ii) the design of the floor pan located immediately in front of a
presumed seating position (for example the presence of a tunnel)
prevents the feet of the manikin from being positioned in a natural
way.
When available, the area intended for an occupied wheelchair shall be
regarded as one seating position.

air_con Boolean This vehicle is equipped with air conditioning.

bonjour Boolean This vehicle is identified as 'bonjour'

https://fr.wikipedia.org/wiki/Vehicle_Identification_Number
https://fr.wikipedia.org/wiki/Vehicle_Identification_Number
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0678

8

amex_accepted Boolean This vehicle accepts American Express card for any amount (no
minimum).

baby_seat Boolean This vehicle is equipped with a baby seat.

bank_check_accepted Boolean This vehicle accepts national bank checks (foreign bank checks might
still be refused).

bike_accepted Boolean This vehicle can transport a bicycle.

credit_card_accepted Boolean This vehicle accepts credit card payments for any amount (no
minimum).
This should be true for vehicles accepting at least Visa and
MasterCard. There is a different Boolean amex_accepted for
American Express.

dvd_player Boolean This vehicle has a DVD player at the disposal of customers during the
ride.

electronic_toll Boolean This vehicle is equipped with an electronic device letting them use
express toll booths on toll roads.

every_destination Boolean As per the French regulation, taxis can refuse service to customers
whose destination is not within their zone. Some taxis do accept any
destination outside of their zone. The every_destination boolean
should be false by default, and true for taxis who renounce their right
to refuse service to customers depending on their destination.

fresh_drink Boolean This taxi offers refreshments.

gps Boolean This vehicle is equipped with GPS navigation.

luxury Boolean This is a luxury vehicle.

nfc_cc_accepted Boolean This vehicle accepts NFC credit card payments.

pet_accepted Boolean This vehicle can accommodate pets (understood as cats or small
dogs; other large or unusual pets might still be refused).

special_need_vehicle Boolean Wheelchair accessible vehicle as defined in “EU/678/2011” (which
amends 2007/46/EC).
Vehicles constructed or converted specifically so that they
accommodate one or more persons seated in their wheelchairs when
traveling on the road.

tablet Boolean This vehicle has a digital tablet at the disposal of the customers during
the ride.

wifi Boolean This vehicle has complimentary Wi-Fi aboard.

cpam_conventionne Boolean This vehicle has a convention with social security to transport patients.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

date_dernier_ct string,
RFC3339

Date of the latest compulsory roadworthiness tests in "YYYY-MM-DD"
format.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0678
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0046
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

9

date_validite_ct String,
RFC3339

Expiration date of the latest compulsory roadworthiness tests in
"YYYY-MM-DD" format.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

engine String Engine type of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

horse_power Integer Fiscal power of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

model_year Integer Model year of the vehicle.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

relais Boolean True if this vehicle is a temporary replacement vehicle for a fully
licensed one.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

taximetre String Brand and model of the taximeter.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

horodateur String Brand and model of the time clock.
This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.

id Integer This field is used for administrative purposes only.
When a new vehicle is created by an Operator, this field can be
omitted or passed with a null value.
There is no need for Operators or Search Engines to store the value
returned by the Taxi Registry: the field used to uniquely identify
vehicles in all transactions with the Taxi Registry is the licence_plate.

private Boolean Obsolete.
See section “2.4 - Declaring a Taxi” instead.

2.3 Registering a Owner/license (ADS)

The structure of the required ads object is described below. You should push this information on a

daily basis to keep the data up to date.

Calls to this API are idempotent: you can update an owner (ADS) simply by submitting the updated

ads object with the post method. If the insee or numero is different, a new owner (ADS) will be

created; if the insee and numero are unchanged, the owner (ADS) will be updated.

Owner (ADS) vs license (ADS)

Following adoption of Bill 17, the meaning of ADS has changed from license to owner.

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

10

The owner of a vehicle used as a taxi requires a license for each vehicule he owns. Before Bill 17,

the Taxi Registry was keeping track of each individual license. Since the adoption of Bill 17, the Taxi

Registry does not keep track of each individual license anymore. The taxi registration does now only

keep track of the owner and the vehicles he owns. An owner may own many vehicules.

The ADS with the meaning of owner can be differentiated from the ADS with the meaning of license

by the value of the taxi zone (insee). If the taxi zone is 1000 (Québec), it means owner, otherwise it

means license.

Zone ADS.insee ADS.numero Name ADS.vdm_vignette

Before Bill 17

Montréal Est 102005 4M000000011A John Doe 8811

Montréal Est 102005 4M000000022B John Doe 8822

After Bill 17

Québec 1000 161555777 John Doe Unused

Response on create Response on update Unique identifier(s)

201 200 insee and numero

POST /api/ads

Parameters ** Send only one item at a time

Body (JSON)
{

 "data": [

 {

 "category": "",

 "insee": "1000",

 "numero": "161555777",

 "owner_name": "Co-op",

 "owner_type": "company",

 "doublage": false,

 "vdm_vignette": "string"

 }

]

}

 Response (JSON) status 200 / 201
{

 "data": [

 {

 "category": "",

 "doublage": false,

 "insee": "1000",

 "numero": "161555777",

11

 "owner_name": "Co-op",

 "owner_type": "company",

 "vehicle_id": null,

 "vdm_vignette": "string"

 }

]

}

12

Key Value Type Description

insee string Bill 17 abolishes the existing taxi zones,
Montreal West (A12), Montreal downtown (A11)
and Montreal East (A5), with the exception of the
YUL airport zone which is under federal
jurisdiction.

Since the adoption of Bill 17, all taxis, in Quebec
province, belong to the 1000(Québec) taxi zone.

Before the adoption of Bill 17, ADS were
identified by their CTQ license number.
Three agglomerations exist for Montreal as
follow:
102005 : A5 – Eastern part of the island of
Montreal
102011 : A11 – Downtown/center Montreal
102012 : A12- West part of the island of
Montreal

numero string After Bill 17, numero represents: The SAAQ file
number identifying a company or an individual
that owns a vehicle. The SAAQ file number
format varies depending on the owner being a
company or an individual.
Ex: company = 161902393
Ex: individual = L1531-171274-08
For individuals, the SAAQ file number is the
same as the driver license number.

See section Owner (ADS) vs license (ADS)
above for more details.

The couple ADS.insee and ADS.numero is used
when declaring a taxi as a driver/vehicle/license
triplet.

Before the adoption of Bill 17, ADS were
identified by their CTQ license number (12
alphanumeric characters).

For historical reasons, values of numero are
case sensitive. Even though, in reality, numero
should not have lower case letters.

owner_name string Name of the holder of the license.
Warning: It might be either an individual or a
company.

owner_type string The two possible values are company or
individual.

13

category string This field is used for administrative purposes.
When a new license (aka ADS) is created by an
Operator, an empty string has to be passed (not
a null value).

doublage boolean Some regulations specific to the Paris area limit
the working hours of the driver to 10 hours a
day. Some licenses (ADS) can be used for 2
shifts a day (by two different drivers) and this
field should then be set to true. Others can only
be operated 10 hours a day and this field should
be set to false.
When a new license (aka ADS) is created by an
Operator, this field should always be set to false
if the local authority in the insee field is not
75056 (i.e. Paris).

vdm_vignette string This field represents the "Vignette" number
given by the BTM (Bureau Taxi Montreal).
Mandatory.
This is ignored when insee (see above) is
Québec-1000 zone.

vehicle_id integer Obsolete.
The association between a vehicle and an owner
(ADS) is done via the taxi. See section “2.4 -
Declaring a Taxi”.

2.4 Declaring a Taxi

Status attribute is OBSOLETE and will be ignored.

The structure of the required taxi object is a minimalist version containing only the identifiers of the

vehicle, driver and ads and the initial status of the taxi. The vehicle, driver and ads used to

compose a taxi need to have been registered first through their respective API.

This request should be used on new taxi creation or when the private attribute changes.As per

drivers, ads, vehicles etc, we recommend that the taxi is updated on a daily basis so the information

is always up to date..

If successful, the API returns the complete taxi object as described including the characteristics of

the vehicle and most importantly the unique identifier id of the taxi that will be used for subsequent

communications.

Calls to this API are idempotent: if you resubmit the same triplet of vehicle, driver and ads, the taxi

returned will have the same id.

Private parameters can be updated via this POST request.

14

Warning: Please make sure to save the returned Id, it will be required to update the taxi later on.

Response on
create

Response on
update

Unique identifier(s)

201 200 licence_plate (vehicle) and
departement and professional_licence (driver) and
insee and numero (ads)

POST /api/taxis

Parameters
Body (JSON) ** Send only one item at a time
{

 "data": [

 {

 "private": true,

 "vehicle": {

 "licence_plate": "FAB1234"

 },

 "driver": {

 "departement": "1000",

 "professional_licence": "L1531-171274-08"

 },

 "ads": {

 "insee": "1000",

 "numero": "161555777"

 }

 }

]

}

15

Response (JSON) status 200 / 201
{

 "data": [

 {

 "ads": {

 "insee": "1000",

 "numero": "161555777"

 },

 "crowfly_distance": 0.00145,

 "driver": {

 "departement": "1000",

 "professional_licence": "L1531-171274-08"

 },

 "id": "ueXs7TR",

 "last_update": null,

 "operator": null,

 "position": {

 "lat": null,

 "lon": null

 },

 "private": true,

 "rating": 4.5,

 "vehicle": {

 "licence_plate": "FAB1234",

 "characteristics": null,

 "color": null,

 "constructor": null,

 "model": "a4",

 "nb_seats": null,

 "type_": "sedan"

 }

 }

]

}

16

Key Value Type Description

ads ADS A partial ADS object with only the fields: insee, numero.

When ADS.insee is Québec-1000 then:
- driver.departement must be 1000 (Québec).

- vehicle.licence_plate cannot be a ‘T’ license plate.

For more detail, see section 5.3.4.

driver driver A partial driver object with only the fields: departement,
professionnal_licence.

vehicle vehicle A partial vehicle object with only the fields: characteristics,
color, constructor, licence_plate, model, nb_seats.
Warning: some of those fields might not be returned (or be
returned with a null value) if they were not provided by the
taxi operator.

id string A long-lived 7 characters long identifier generated for this
vehicle/ads/driver triplet by the Taxi Registry.
This field should be omitted by operators when declaring a
new taxi through a POST request; the newly generated id will
be returned in the taxi object sent back as the response.

operator string Login of the certified operator.

private boolean As per VDM and BTM's requirements, as an option, you can
set the taxi's private field to true or false. By default, the taxi's
private field is set to false. A private taxi will never be
promoted by the Taxi Registry even if it’s the closest taxi from
a customer.

This field is typically used for independent taxi as they may
deal with an operator to satisfy their geolocation obligation,
but do not pay to receive ride requests. These taxis can
therefore only be hailed on the street.

type_ String Type of the vehicle.
The possible values are sedan, station_wagon, normal or
mpv.
Warning: the name of this key is type_ with the final
underscore.
If your type is not listed use "type_": null.

rating float The mean of the ratings of last rides of the taxi.
It is calculated by the Taxi Registry and falls between 0 and
5.

17

position {lat, lon} The latitude and longitude of the taxi.
Warning: those values are only returned by the Taxi Registry
in the response to a GET request on the /taxis/ API looking
for taxis around a customer. They will be nulled when
returned in the response to a GET request on the
/taxis/{taxi_id}/ API looking for information on a specific taxi.

last_update integer Timestamp of the last geolocation update of the taxi. The
format is the usual Unix time (IEEE P1003.1 POSIX) and as
such is UTC (no timezone).

crowfly_dista
nce

float Obsolete.
The crow flies distance between the taxi and the customer.
(km)

status status Obsolete.
Status of the taxi.
The hailing feature is replaced by the deep link approach.

3. Taxi Positions and Status

3.1 Updating the location and status of a taxi

You should push this information in batches every 5 seconds to keep the data up to date.

The JSON payload should be as follows.

POST /api/taxi-position-snapshots

Parameters

Body (JSON) **items should contain all your taxis
{

 "items": [

 {

 "timestamp": "1430076493",

 "operator": "coop",

 "taxi": "tPc79rW",

 "lat": "45.38852053",

 "lon": "-73.84394873",

 "device": "phone",

 "status": "free",

 "version": "2",

 "speed": "50",

 "azimuth": "180"

 }

]

}

https://en.wikipedia.org/wiki/Unix_time

18

Key Value Type Description Mandatory

timestamp string Exact time at which the location was determined
by the taxi, formatted as a Unix time (IEEE
1003.1-2008 POSIX).

Warning: as per the POSIX specification, this
should be UTC time without any timezone
information.

Warning: Do not send locations in the future
(or older than 1 minute) as they will return a
http 400 error. Timestamp must be in second.

Yes

operator string Login of the certified operator. Yes

taxi string The id of the taxi is the id that was sent back when
the taxi was declared (see Declaring a taxi).

Yes

lat string Latitude of the taxi.

Accepted range: -85.05112878 to 85.05112878.

This should be in JavaScript double precision
floating-point format, with decimal separator ".".

You can truncate the values to 6 decimal places if
you want to keep the payload as short as possible
(6 decimal places is worth up to 10 cm).

Yes

lon string Longitude of the taxi.

Accepted range: -180 to 180.

This should be in JavaScript double precision
floating-point format, with decimal separator ".".

You can truncate the values to 6 decimal places if
you want to keep the payload as short as possible
(6 decimal places is worth up to 10 cm).

Yes

device string phone, tablet, taximeter or otherdevice. Yes

http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://standards.ieee.org/findstds/standard/1003.1-2008.html

19

status string Possible values: answering, free, occupied, off,
oncoming or unavailable.

Mandatory.

For more details, see the table below.

Yes

version string "2" for now (geolocation version 2 of the API). Yes

speed string The actual speed of the taxi (in km/h). Yes

azimuth string The current orientation of the taxi (360°).

Accepted range: 0 to 360.

Yes

20

3.2 Taxis Status

Value Description Mandatory

answering The taxi is currently answering a ride request. No, use unavailable if the
information is not available.

free The taxi is free to receive ride requests.. yes

occupied The taxi has a customer on board. yes

off The taxi is not logged in or did not update its location
recently enough.

yes

oncoming The taxi is on its way to meet a customer. No, use unavailable if the
information is not available.

unavailable The taxi is logged in, but cannot receive ride requests. yes

3.3 Updating the status of a taxi

This section is OBSOLETE. Please notice the following:

1. It is now recommended to use POST /api/taxis (section 2.4) to modify the private attribute.

2. Even if it is discouraged to use PUT /api/taxis/{taxi_id}, it is still a valid request.

3. Only status change submitted through POST /api/taxi-position-snapshots (section 3.1) will

be considered. Sending status value through PUT /api/taxis/{taxi_id}, is still possible but

status value will be ignored.

The status of the taxi should be sent to the Taxi Registry whenever there is a change of status from

the operator. The possible status is free or occupied or off or answering or oncoming. This is done

through a “HTTPS PUT request to the /taxis/{taxi_id}/ API”.

You can only update the following attributes: status and private. For more details, see the attribute

description in section 2.4 “Declaring a taxi”.

21

PUT /api/taxis/{taxi_id}
Parameters
Taxi_id (string)
Body (JSON) ** Send only one item at a time
{

 "data": [

 {

 "status": "free",

 (mandatory)"private": "false" (string or boolean)

 }

]

}

Response
Return the taxi's details in JSON (see below 3.4 Querying a taxi)

3.4 Querying a taxi

In order to check that the updating of the status or location of the taxi worked properly, you can use

a “HTTPS GET request to the /taxis/{taxi_id}/ API”.

Warning: the GET /taxis/{taxi_id}/ API will return the status and the last_update (in UNIX TIME) but

the “lat” and“lon” will be null (for privacy reasons).

Warning: in production, you should almost never need the GET /taxis/{taxi_id}/ API. The endpoint is

provided only to improve the developer experience by allowing them to know the status, ads, driver

and vehicle of a taxi.

22

GET /api/taxis/{taxi_id}
Parameters
Path
taxi_id (string)(required)
Response (JSON) status 200
{

 "data": [

 {

 "ads": {

 "insee": "1000",

 "numero": "161555777"

 },

 "crowfly_distance": 0.00145,

 "driver": {

 "departement": "1000",

 "professional_licence": "L1531-171274-08"

 },

 "id": "VsLwptA",

 "last_update": 1502819736,

 "operator": "coop",

 "position": {

 "lat": null,

 "lon": null

 },

 "private": false,

 "rating": 4.42332039594968,

 "status": "answering",

 "vehicle": {

 "licence_plate": "FAB1234",

 "characteristics": [

 "every_destination",

 "gps",

 "pet_accepted",

 "bike_accepted",

 "credit_card_accepted",

 "luxury"

],

 "color": "GRISE",

 "constructor": "TOYOTA",

 "model": "SIENNA",

 "nb_seats": 6,

 "type_": "sedan",

 }

 }

]

}

 See section 2.4 Declaring a Taxi for details about the different fields.

23

4. GTFS-OnDemand

GTFS-OnDemand is an extension to the GTFS specification. The General Transit Feed

Specification (GTFS) is a data specification that allows public transit agencies to publish their transit

data in a format that can be consumed by a wide variety of software applications.

The GTFS-OnDemand extension aims at facilitating the discoverability and booking of OnDemand

transportation services, such as a taxicab service. The specification describes a standard way of

communicating between the different actors.

In order to initiate a ride request, search engines send an inquiry to the Taxi Registry via the POST

/inquiry endpoint (standardized by the GTFS-OnDemand specification).This endpoint provides

estimates for the trip with the operator that has the closest taxi to the customer. Equity between

operators is guaranteed by always promoting the operator with the closest taxi to the customer.

Additionally, the Taxi Registry implementation of this endpoint also provides the search engine with

all the detailed information required to book the taxi with the operator, thus facilitating the data

consumption process defined by the standard GTS-OnDemand feed. While the standard feed may

still be used to have an overview of the taxi offering in Montreal, it is now optional to consume it.

Once the inquiry response is available, the customer can book the operator promoted by the Taxi

Registry directly with the operator’s app or website. In this case, the trip planning apps interact with

the operator app or website by following URLs that respect the GTFS-OnDemand URL Scheme.

After following the URL, the customer continues directly on the operator app or website to book the

trip. The customer can also book the operator promoted by the Taxi Registry by phone.

https://mobilitydata.org/why-on-demand-transportation-needs-to-be-standardized/
https://gtfs.org/
https://docs.google.com/document/d/1p3TG1i8UuxNidL3NH_dxJgIgEwaX4oPGEx0vPT9S-20/edit#heading=h.lkpijobif7w5
https://docs.google.com/document/d/1p3TG1i8UuxNidL3NH_dxJgIgEwaX4oPGEx0vPT9S-20/edit#heading=h.b34tq4nq0h5y
https://docs.google.com/document/d/1p3TG1i8UuxNidL3NH_dxJgIgEwaX4oPGEx0vPT9S-20/edit#heading=h.8uuzi4se1dps

24

4.1 GTFS-OnDemand Deep Link Compliance

The Taxi Registry offers several ways to book a taxi:

- By phone

- Through a website,

- Through an Android app,

- Through an iOS app,

In order to be promoted by the Taxi Registry and receive ride requests, the operator must at least

offer booking with a phone number or with a website address. The following subsection focuses on

the URL Scheme, and does not apply to booking by phone.

Although an operator that offers only booking by phone can be promoted by the Taxi Registry, we

strongly encourage the operators to support deep linking with your mobile applications to offer the

best user experience.

4.1.1 URL Scheme

To support booking with an application through the Taxi Registry, a mobile application or a website

must comply with the GTFS-OnDemand URL scheme. In order to offer services on mobile devices,

an operator must either support both Android and iOS platforms or offer a separate way of booking

(phone number or web for instance) and just use one platform (Android only for instance).

https://docs.google.com/document/d/1p3TG1i8UuxNidL3NH_dxJgIgEwaX4oPGEx0vPT9S-20/edit#heading=h.8uuzi4se1dps

25

To facilitate the integration process, the Taxi Registry does not support standard deep links. Deep

linking for mobile applications must use Android App Links or iOS Universal Links which are more

recent and easier to use (see this link to differentiate between deep links formats).

To conform to the GTFS-OnDemand URL scheme, a mobile application or a website must support

HTTPS GET requests with the following parameters:

Field Name Details

service_type The type of service the rider intends to book (standard, minivan or
special need taxi). The three expected service_type are:
 taxi-registry-standard

 taxi-registry-minivan

 taxi-registry-special-need

pickup_latitude The latitude for the pickup location. This field should have a precision of
6 decimal places (0.000001). If this field is not populated, the rider’s
current latitude is taken as the pickup latitude.

pickup_longitude The longitude for the pickup location. This field should have a precision
of 6 decimal places (0.000001). If this field is not populated, the rider’s
current longitude is taken as the pickup longitude.

pickup_address The text attached to the pickup coordinates. When provided, should be

displayed as-is since this reflects the user input. Can be empty.

dropoff_latitude The latitude for the dropoff location. This field should have a precision of
6 decimal places (0.000001). Trip planning applications may leave this
field blank and allow riders to input their drop off details later in the
booking application, or to coordinate the drop off with the driver.

dropoff_longitude The longitude for the dropoff location. This field should have a precision
of 6 decimal places (0.000001). Trip planning applications may leave this
field blank and allow riders to input their drop off details later in the
booking application, or to coordinate the drop off with the driver.

dropoff_address The text attached to the dropoff coordinates. When provided, should be

displayed as-is since this reflects the user input. Can be empty.

More parameters are available in the GTFS-OnDemand specification, but are not recommended by

the Taxi Registry. The acceptance test will only cover the above parameters.

https://blog.branch.io/universal-links-uri-schemes-app-links-and-deep-links-whats-the-difference/
https://docs.google.com/document/d/1p3TG1i8UuxNidL3NH_dxJgIgEwaX4oPGEx0vPT9S-20/edit#heading=h.8uuzi4se1dps

26

4.1.2 Services available

The Taxi Registry currently offers 3 types of services that a customer can request:

● Standard taxi booking

for regular users, mostly carried by sedans

● Minivan booking

for group of users or when extra cargo space is required

● Special need taxi booking

for riders with capability issues

The service_type parameter described in the section “4.1.1 URL Scheme” is used to

differentiate the type of service requested by the user. The service_type parameter must be taken

into account if the application allows booking for different types of services.

Some operators may use a distinct app for special need taxi booking. The Taxi Registry offers two

options to accommodate existing applications:

1. Use a distinct app for special need taxi booking

2. Use the same app for standard taxi booking, minivan booking and special need taxi booking

and use the service_type parameter to distinguish between the different service types

4.1.3 Coordinates and addresses

The exact location to route the taxi to and from are reflected by the GPS coordinates as a latitude

and longitude pair. Since the coordinates only references a point on a map, search engines are

encouraged to also provide the addresses entered by the user. When provided, these addresses

supersedes any other address displayed by your application. The field should be displayed without

any modification or translation.

4.2 GTFS-OnDemand Acceptance Process

As mentioned previously in the section “4. GTFS-OnDemand”, an acceptance process will be

performed between the operators and the Taxi Registry to validate the GTFS-OnDemand URL

scheme compliance.

4.2.1 Prerequisites

Before starting the GTFS-OnDemand acceptance process, the operator must be integrated with the

Taxi Registry as described in sections “2. Contextual Data” and “3. Taxi positions and status” and

the operator must be sending the positions and status of its taxi fleet to the Taxi Registry every 5

seconds.

27

4.2.2 Communicate your information to the Taxi Registry support team

First, you need to communicate the phone number and endpoints you will be using to receive ride

requests. You can do so by sending an email with detailed information to

support.taxi.exchange.point@montreal.ca

In this email, you must clearly identify yourself using the same email you are already using when

communicating with the Taxi Registry. Here is the extra information you need to communicate to the

Taxi Registry (if available):

For standard taxis:

- Whether standard taxis can be booked?

- Phone number

- Website booking URL

- Android booking URL

- Android store URL

- iOS booking URL

- iOS store URL

For minivans:

- Whether a minivan can be booked from the standard taxis website booking URL?

- Whether a minivan can be booked from the standard taxis android booking URL?

- Whether a minivan can be booked from standard taxis iOS booking URL?

For special need taxis:

- Whether special need taxis can be booked?

- Phone number

- Website booking URL

- Android booking URL

- Android store URL

- iOS booking URL

- iOS store URL

4.2.3 Make the applications and/or website conform to GTFS-OnDemand

Once the information described in the previous section is submitted, you can make the change to

your applications and/or website and verify that they conform to the GTFS-OnDemand URL Scheme

with the acceptance test. The acceptance test is generated based on the specific information sent

by the operator (see previous section) and can be downloaded with the following route:

GET /api/current-user/gtfs-url-scheme-acceptance-test

Response (HTML) status 200

mailto:support.taxi.exchange.point@montreal.ca

28

Here is an excerpt of an acceptance test:

Your application must handle all the parameters correctly, meaning the customer should not have to

reenter information that was already provided to the trip planning app of the search engine. This

information is provided to the applications and/or website of the operator through the GTFS-

OnDemand URL Scheme.

Here is an example of a URL based on the GTFS-OnDemand URL Scheme: https://www.example-

operator.com?service_type=taxi-registry-

standard&pickup_latitude=45.497271007&pickup_longitude=-

73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%20

6X4&dropoff_latitude=45.50891801&dropoff_longitude=-

73.554333425&dropoff_address=City%20Hall

Using the example above, your application must open directly where you can book a special need

taxi from 80 Queen street to the City hall. The coordinates received should be used to route the taxi,

and the text displayed should be respectively `80 Queen, Montréal, QC H3C 6X4` for the pickup

location and `City Hall` for the drop off location. Not handling the parameters properly will result in a

failure of the acceptance process.

https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall
https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall
https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall
https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall
https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall
https://www.example-operator.com/?service_type=taxi-registry-standard&pickup_latitude=45.497271007&pickup_longitude=-73.554539698&pickup_address=80%20Queen%2C%20Montr%C3%A9al%2C%20QC%20H3C%206X4&dropoff_latitude=45.50891801&dropoff_longitude=-73.554333425&dropoff_address=City%20Hall

29

4.2.4 Final verification

The Taxi Registry support team will verify that your applications and/or website conform to the

GTFS-OnDemand URL Scheme using the exact same acceptance test described in the previous

section. Thus, the operators must rigorously verify the compliance to GTFS-OnDemand by

themselves before contacting the Taxi Registry support team for the final verification. Moreover,

the operators need to make sure their applications or website are accessible externally so the Taxi

Registry support team can perform the acceptance test on their end.

To initiate the process, you can contact the Taxi Registry support team at

support.taxi.exchange.point@montreal.ca.

5. Tests
This section illustrates tests that operator’s IT staff can perform to verify proper Taxi Registry

integration and to ensure that changes, required by Bill 17, are properly implemented.

Steps grouping

Tests steps are grouped, when appropriate, in two sections:

● Initial State.

○ Indicates the situation before tests start. This situation may already exist or can be

created in the acceptance environnement by following proposed steps.

○ On test step’s table this section starts with the title: Initial State

○ On pictograms this section is delimited by dashed lines.

● Test.

○ Indicates steps to follow in order to conform to Bill 17.

○ On test step’s table this section starts with the title: Test

Pictograms

Pictograms are used to facilitate comprehension by clearly differentiating entities. (Different

vehicles, drivers, taxis etc.) Also, at the end of test procedures, they help illustrate, not only the

entities created by the test procedure, but also the link between different entities.

● A particular color or an uppercase letter/number combination identifies a single entity.

● Different entities of the same color are not necessarily linked, though they generally are.

● Arrows formally bind different entities.

Icons contain a textual reference, consisting of an uppercase letter: D for driver, V for vehicle, P for

permit and T for taxi followed by and an index number: Uniquely identifying the entity.

mailto:support.taxi.exchange.point@montreal.ca

30

Icon Entity (generic) Identification

Driver Drive number 1

Vehicle Vehicle number 1

Permit (ADS) Permit number 1

Taxi Taxi number 1

5.1 Contextual Data Tests

5.1.1 The license plate of a vehicle changes

Unlike the driver's license number and the SAAQ file number which are immutable, the license plate

can change over time. An owner can change, at will, his vehicle’s license plate.

31

Step Action Request Response Icon

Initial State

1 Create a driver.

POST /api/drivers
{
 "data": [
 {
 "professional_licence": "L1006-221166-01",
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 ...
 }
]
}

HTTP 201 Created

2 Create a vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0011",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

3 Create a permit/ADS.

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000011",
 ...
 }
]
}

HTTP 200 OK

4
Create a taxi using the driver D1,
vehicle V1 and permit/ADS P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FAA0011"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

32

Test

5
Create a vehicle identical to V1 but
with a different licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FBB0022",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

6
Create a taxi for vehicle with the
new license plate

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FBB0022"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

7
Start sending taxi positions and
status with the taxi created (T2).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T2",
 ...
 }
]
}

HTTP 200 OK

33

Entities present in the system after the license plate renewal

5.2 Bill 17 Tests

This section is intended for the operator’s IT staff responsible for implementing the changes,

required by Bill 17, in the operator's IT system. This section presents all the information and the

links required to implement these changes.

To understand how these changes impact the operator at the business level, see the document

Guide d’accompagnement loi 17.

For information on how to read the tests presented in this section, see Steps grouping and

Pictograms in section 5.

The operator's IT staff is responsible for verifying that the changes required by Bill 17 are

correctly implemented in the operator's IT system.

The operator’s IT staff is responsible for deciding when to deploy these changes to the

production environment.To ensure proper migration, tests can be performed, at will, in the

acceptance environment at: https://taximtl.accept.ville.montreal.qc.ca.

BTM’s staff remains available for answering any related questions at:

support.taxi.exchange.point@montreal.ca.

If needed, the operator’s IT staff can contact the BTM to check that the Bill 17 changes are properly

implemented by verifying the test results in the acceptance environment.

http://www.registretaximontreal.ca/operateur/
https://taximtl.accept.ville.montreal.qc.ca/
mailto:support.taxi.exchange.point@montreal.ca

34

When available, vehicle_identification_number must be transmitted

See section 2.2 for more information.

Obligation to continue transmitting vehicle’s positions

In accordance with the Act regulating the remunerated transport of persons by automobile, vehicles

must remain connected to the Taxi register of the Bureau du taxi de Montréal (BTM). During the

transition period (October 10, 2020 to March 31, 2021), positions of non-migrated vehicles must

continue to be transmitted as long as the position’s transmission of migrated vehicles is not active.

5.2.1 Migrate a driver when the vehicles he drives have not been migrated yet

This migration can be performed as soon as possible. There are no prerequisites.

35

Step Action Request Response Icon

Initial State

1
Create a driver with Montréal-600
department.

POST /api/drivers
{
 "data": [
 {
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "00011",
 "departement": {
 "nom": "Montréal",
 "numero": "660"
 }
 }
]
}

HTTP 201 Created

2
Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 ...
 }
]
}

HTTP 201 Created

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 ...
 }
]
}

HTTP 201 Created

4
Create the first taxi driven by D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created

36

5
Create a second vehicle with ‘T’
licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00012B",
 ...
 }
]
}

HTTP 201 Created

6 Create a second permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000012B",
 "vdm_vignette": "5512",
 ...
 }
]
}

HTTP 200 OK

7
Create the second taxi driven by
D1 and link it to V2 and P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000012B"
 },
 "vehicle": {
 "licence_plate": "T00012B"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created

Test

8

In accordance with Bill 17, create a
new driver using his driving license
number and Québec-1000
department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L0006-221166-01"
 }
]
}

HTTP 201 Created

37

9

Create a taxi using the driver in
accordance with Bill 17 (D3) and
the first vehicle that has not been
migrated yet (V2 with P2).

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L0006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

10
Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

11

A driver may drive many
vehicles. Make sure to create a
new taxi for each vehicle driven
by the driver.

Create a second taxi using the
driver in accordance with Bill 17
(D3) and the second vehicle that
have not been migrated yet (V2
with P2)

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000012B"
 },
 "vehicle": {
 "licence_plate": "T00012B"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L0006-221166-01"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T4”,
 ...
 }
]
}

12
Start sending taxi positions and
status with the taxi created (T4).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T4",
 ...
 }
]
}

HTTP 200 OK

38

Entities present in the system after the migration

5.2.2 Migrate a vehicle when the drivers who drive it have been migrated

This migration can be performed when an owner transmits the new license plate in conformity with

Bill 17 (No T license plate).

Before performing this migration, the migration 5.3.1 must have been performed for all the drivers

who drive the vehicle.

Note that an owner can change the license plate for reasons unrelated to Bill 17. See section 5.1.1

for more information.

39

Step Action Request Response Icon

Initial State

1

To emulate the results of the
migration described section 5.3.1,
create a new driver using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L1006-221166-11"
 }
]
}

HTTP 201 Created

2
Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 201 Created

40

4
Create the first taxi driven by D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created

5

To emulate the results of the
migration described section 5.3.1,
create a second driver using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "Jane",
 "last_name": "Din",
 "professional_licence": "L2006-221166-22"
 }
]
}

HTTP 201 Created

6
Create the second taxi driven by
D2 and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L2006-221166-22"
 },
 …
 }
]
}

HTTP 201 Created

Test

41

7

In accordance with Bill 17, create a
vehicle identical to V1 but with the
new licence plate.

For more details on how to submit
a vehicle in accordance with Bill
17, see the description of
licence_plate in section 2.2

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0012",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

8

In accordance with Bill 17, create a
permit/ADS identical to P1 but with
zone Québec-1000 and SAAQ file
number.

For more details on how to submit
a permit/ADS in accordance with
Bill 17, see the description of insee
and numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000012",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

9
Create a taxi using driver D1,
vehicle V2 and permit/ADS P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000012"
 },
 "vehicle": {
 "licence_plate": "FAA0012"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

10
Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

42

11
Create a taxi using driver D2,
vehicle V2 and permit/ADS P2.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000012"
 },
 "vehicle": {
 "licence_plate": "FAA0012"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L2006-221166-22"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T4”,
 ...
 }
]
}

12
Start sending taxi positions and
status with the taxi created (T4).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T4",
 ...
 }
]
}

HTTP 200 OK

Entities present in the system after the migration

43

5.2.3 Migrate a vehicle and the drivers who drive it at the same time

This migration can be performed as soon as an owner transmits the new license plate in conformity

with Bill 17 (No T license plate).

This scenario is an alternative to scenarios described in sections 5.3.1 and 5.3.2. If this scenario

does not simplify the changes required by Bill 17 in the operator's IT system, then just ignore it and

use the two-step migration as described in sections 5.3.1 and 5.3.2 instead.

This scenario is more complex, because during the transition period, a driver can drive the migrated

vehicle and the non-migrated vehicle. For this scenario to succeed, the operator's IT system must

be able to continue to identify the driver by the pocket number when he is driving the non-migrated

vehicle and identify the same driver by his driving license number when he drives the migrated

vehicle.

Note that in order to keep this scenario simple, it presents the case where the migrated vehicle is

driven by a single driver. However, the operator's IT system must also support the scenario

where the migrated vehicle is driven by multiple drivers.

44

Step Action Request Response Icon

Initial State

1
Create a driver with Montréal-600
department.

POST /api/drivers
{
 "data": [
 {
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "00011",
 "departement": {
 "nom": "Montréal",
 "numero": "660"
 }
 }
]
}

HTTP 201 Created

2
Create a vehicle with a ‘T’ licence
plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00011A",
 "type_": "sedan",
 "constructor": "audi",
 "model": "a4"
 ...
 }
]
}

HTTP 201 Created

3 Create a permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000011A",
 "vdm_vignette": "5511",
 ...
 }
]
}

HTTP 201 Created

45

4

Create the first taxi driven by D1
and link it to V1 and P1.

This taxi will remain unmigrated at
the end of this test.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000011A"
 },
 "vehicle": {
 "licence_plate": "T00011A"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

5
Start sending taxi positions and
status with the taxi that will not be
migrated. (T1)

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

6
Create a second vehicle with a ‘T’
licence plate.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "T00022B",
 "type_": "mpv",
 "constructor": "toyota",
 "model": "camry"
 ...
 }
]
}

HTTP 201 Created

7 Create a second permit (ADS)

POST /api/ads
{
 "data": [
 {
 "insee": "102005",
 "numero": "4M000000022B",
 "vdm_vignette": "5522",
 ...
 }
]
}

HTTP 201 Created

46

8

Create a second taxi driven by
driver D1 and link it to V2 and P2.

This taxi will be migrated in the
Test section.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "102005",
 "numero": "4M000000022B"
 },
 "vehicle": {
 "licence_plate": "T00022B"
 },
 "driver": {
 "departement": "660",
 "professional_licence": "00011"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

Test

9

In accordance with Bill 17, create a
driver, identical to D1 but using his
driving license number and
Québec-1000 department.

For more details on how to submit
a driver in accordance with Bill 17,
see the description of department
and professional licence in section
2.1

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L3006-221166-33"
 }
]
}

HTTP 201 Created

10
In accordance with Bill 17, create a
vehicle, identical to V2 but using a
license plate without T prefix.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FCC0013",
 "type_": "mpv",
 "constructor": "toyota",
 "model": "camry"
 ...
 }
]
}

HTTP 201 Created

11

In accordance with Bill 17, create a
permit/ADS identical to P2 but with
zone Québec-1000 and SAAQ file
number.

For more details on how to submit
a permit/ADS in accordance with
Bill 17, see the description of insee
and numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "163000013",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

47

12
Create a taxi driven by driver D3
and link it to V3 and P3.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "163000013"
 },
 "vehicle": {
 "licence_plate": "T00013C"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L3006-221166-33"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T3”,
 ...
 }
]
}

13
Start sending taxi positions and
status with the taxi created (T3).

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T3",
 ...
 }
]
}

HTTP 200 OK

14

Taxi T1 continues to send
positions and status. T1 remains
unmigrated.

At this point John Doe drives a
migrated vehicle (V3) as driver D3
and an unmigrated vehicle (V1) as
driver D1.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

48

Entities present in the system after the migration

5.2.4 Unallowed migration paths

Owners will not all regularize their situation with the SAAQ at the same time. During the transition
period, some vehicles will be migrated and others will not. However, when a taxi is linked to an
owner (ADS) in the Québec-1000 zone, that taxi must be fully migrated. (Driver, vehicle and
owner/license/ADS)

1. It is not possible to migrate an owner (ADS) without migrating the drivers that drive the
vehicle belonging to that owner.

As soon as possible, drivers must send their driver’s license number to the operator.

If the owner (ADS) is in the Québec-1000 zone, then a linked driver must be in the Québec-
1000 department; otherwise a http 400 error will occur.

2. It is not possible to migrate the owner without migrating the vehicle.

Following the license plate change, the owner must communicate his SAAQ file number and
his new license plate number to the operator.

If the owner is in the Québec-1000 zone, then the license plate must not start with a T;
otherwise a http 400 error will occur.

5.2.5 Many vehicles can have the same owner

As described in section 2.3, following adoption of Bill 17, the meaning of ADS has changed from

permit to owner’s license. This example illustrates this change. Please make sure this change is

well supported by the operator's IT system.

To simplify, all vehicles will be driven by the same driver.

49

Test

1
Create a driver in the Québec-
1000 department.

POST /api/drivers
{
 "data": [
 {
 "departement": {
 "nom": "Québec",
 "numero": "1000"
 },
 "first_name": "John",
 "last_name": "Doe",
 "professional_licence": "L1006-221166-11"
 }
]
}

HTTP 201 Created

2 Create a vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FAA0011",
 ...
 }
]
}

HTTP 201 Created

3 Create a second vehicle.

POST /api/vehicles
{
 "data": [
 {
 "licence_plate": "FBB0022",
 ...
 }
]
}

HTTP 201 Created

4

Create a permit/ADS in the zone
Québec-1000 and SAAQ file
number.

For more details on how to submit
an ADS in accordance with Bill 17,
see the description of insee and
numero in section 2.3

POST /api/ads
{
 "data": [
 {
 "insee": "1000",
 "numero": "161000011",
 "owner_name": "Taxi-Pro",
 ...
 }
]
}

HTTP 200 OK

50

5
Create a taxi driven by driver D1
and link it to V1 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FAA0011"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T1”,
 ...
 }
]
}

6
Create a second taxi driven by
driver D1 and link it to V2 and P1.

POST /api/taxis
{
 "data": [
 {
 "ads": {
 "insee": "1000",
 "numero": "161000011"
 },
 "vehicle": {
 "licence_plate": "FBB0022"
 },
 "driver": {
 "departement": "1000",
 "professional_licence": "L1006-221166-11"
 },
 …
 }
]
}

HTTP 201 Created
{
 "data": [
 {
 "id": “$T2”,
 ...
 }
]
}

7
Start sending taxi positions and
status with the taxi T1.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T1",
 ...
 }
]
}

HTTP 200 OK

8
Start sending taxi positions and
status with the taxi T2.

POST /api/taxi-position-snapshots
{
 "items": [
 {
 "taxi": "$T2",
 ...
 }
]
}

HTTP 200 OK

51

Entities present in the system after the test

